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Abstract
We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes
in salt solutions. Our approach is based on separation of length scales which allowed us to split
a chain’s electrostatic energy into two parts that describe local and remote electrostatic
interactions along the polymer backbone. The local part takes into account interactions between
charged monomers that are separated by distances along the polymer backbone shorter than the
chain’s persistence length. These electrostatic interactions renormalize chain persistence length.
The second part includes electrostatic interactions between remote charged pairs along the
polymer backbone located at distances larger than the chain persistence length. These
interactions are responsible for chain swelling. In the framework of this approach we calculated
effective chain persistence length and chain size as a function of the Debye screening length,
chain degree of ionization, bare persistence length and chain degree of polymerization. Our
crossover expression for the effective chain’s persistence length is in good quantitative
agreement with the experimental data on DNA. We have been able to fit experimental datasets
by using two adjustable parameters: DNA ionization degree (α = 0.15–0.17) and a bare
persistence length (lp = 40–44 nm).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Swelling of a polyelectrolyte chain in salt solutions is one
of the classical problems of polymer physics [1–3]. The
solution of this problem is of paramount importance for
understanding the conformational and elastic properties of
DNA [4–17]. The first attempt to account for the effect of the
electrostatic interactions on conformations of a polyelectrolyte
chain was done over 60 years ago by Kuhn, Kunzle and
Katchalsky [18, 19] and by Hermans and Overbeek [20].
Balancing a chain conformational entropy with an electrostatic
second virial coefficient they established that a polyelectrolyte
chain in a salt solution swells with deceasing salt concentration
such that a chain size scales with the Debye screening
length, κ−1, and the chain degree of polymerization, N ,
as R ∝ κ−2/5 N3/5. This result was unchallenged until
1977 when Odijk [21] and, independently, Skolnick and
Fixman [22] established that electrostatic interactions between
charged monomers can lead to an additional stiffening of
a semiflexible polyelectrolyte chain. They showed that an
electrostatic correction to the chain’s persistence length lOSF

p

is a quadratic function of the Debye screening length, lOSF
p ∼

κ−2. According to this finding a polyelectrolyte chain in
a salt solution behaves as a semiflexible polymer whose
stiffness could be adjusted by changing salt concentration.
Thus, in addition to chain swelling, electrostatic interactions
can also change the local chain’s bending properties. The
combined effect of the electrostatic interactions on the local
chain stiffening and swelling was taken into account by Odijk
and Houwaart [23]. Their analysis leads to a chain size, R ∝
κ−3/5 N3/5, which has a stronger salt concentration dependence
than the KKKHO result. Note that the original KKKHO
result [18–20] can be derived by assuming a linear scaling of
a chain’s persistence length with κ−1. Thus, the discrepancy
between the two results is due to a different dependence of the
chain’s persistence length on the Debye radius.

Since the early 1980s development of a theory of
a polyelectrolyte chain in salt solutions followed two
parallel paths reproducing either a linear [24–33] or
quadratic [2, 34–43] dependence of the chain’s persistence
length on the Debye screening length. Computer simulation
results were also more or less equally divided between the two
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camps [44–48]. There exists a substantial amount of literature
on this subject and it is impossible to cover all of it in a short
introduction. A more detailed review of the subject can be
found in [1, 3]. Here we will briefly outline only some of the
papers to illustrate the different points of view.

The original KKKHO approach [18–20] was improved
by Muthukumar [25, 26] who applied the Edwards–Singh
variational principle [49] to account for the effect of the
electrostatic interactions on a chain’s statistics and derived
a general expression for a chain size dependence on
salt concentration which covered both low and high salt
concentration regimes. In the swollen chain regime R ∝
N3/5κ−2/5 scaling is recovered. Schmidt [24] modified a Flory
approach to calculate the chain size and persistence length.
In this approach the electrostatic energy of the chain was
evaluated using the worm-like chain distribution function for
the average mean-square distance between monomers. The
numerical minimization of the chain’s free energy leads to a
weaker than κ−2 dependence of a chain’s persistence length
without a pure scaling regime. At high salt concentrations
the electrostatic persistence length seems to be approaching
κ−1 dependence. Barrat and Joanny [27] used a Gaussian
variational approach with a trial function describing a chain
under tension to describe a chain’s bending rigidity. This
resulted in a κ−1 dependence for the electrostatic persistence
length. In a series of papers Ha and Thirumalai [29, 34]
applied the Edwards and Singh variational principle [49]
minimizing the error in the chain mean-square end-to-end
distance between a trial chain and an actual polymer chain.
For weakly charged chains the electrostatic persistence length
is proportional to κ−2. However, the electrostatic interactions
of intermediate strength lead to a linear dependence of the
electrostatic persistence length on κ−1. Netz and Orland [39]
and Manghi and Netz [40] have applied a Gaussian variational
principle with electrostatic persistence length as an adjustable
parameter. This approach leads to κ−2 dependence of
the electrostatic persistence length reproducing Khokhlov–
Khachaturian’s result for weakly charged chains [50].
However, for a swollen chain regime these calculations led
to a surprising size scaling with R ∝ N2/3κ−2/3. An
extension of the Muthukumar approach [25, 26] to semiflexible
polyelectrolytes was recently done by Ghosh et al [51].

Thus, as one can see from our brief overview of the
subject the results for the chain size and persistence length
scaling depend on approximations used during derivation and
particular on how electrostatic interactions at different length
scales were taken into account. In this paper we re-examine
a problem of swelling of a semiflexible polyelectrolyte chain.
We utilize a scale separation approximation in which the
effect of the electrostatic interactions can be divided into
two parts. The first one represents interactions between the
charged pairs located at distances along the polymer backbone
shorter than the chain persistence length. These interactions
are responsible for the local chain stiffening. The second part
of the electrostatic interactions includes interactions between
charged groups remote along the polymer backbone and is
responsible for the chain swelling effect. We will show how
this separation can be done in a consistent manner by using

a high temperature expansion when electrostatic interactions
can be considered as a weak perturbation and by applying the
Edwards–Singh variational principle in a case of electrostatic
interactions with arbitrary strength.

The rest of this paper is organized as follows. In section 2
we provide a brief overview of the results for semiflexible
chains using a normal mode representation. Section 3 presents
calculations of the chain swelling in the framework of a
high temperature expansion and Edwards–Singh variational
approach. We will also derive a crossover expression for
the effective chain’s persistence length which accounts for
swelling effects. In section 4 we compare our predictions with
experimental data for DNA persistence length dependence on
a solution ionic strength. Finally, in section 5 we summarize
our results.

2. Ideal semiflexible chain

Before addressing the swelling of a semiflexible polyelec-
trolyte chain we present a brief overview of the general results
for an ideal semiflexible chain. Consider a semiflexible
chain with the number of bonds N . A chain conformation
is described by a set of 3D bond vectors {�ri }, connecting
neighboring monomers along the polymer backbone. The
potential energy of an ideal semiflexible chain with the reduced
bending energy K in a given conformation is

U0({�ri })
kBT

= K

2

N−2∑

i=0

(
�ri − �ri+1

)2

+ μ0

2

N−1∑

i=0

�r 2
i , (1)

where the second term accounts for the constraint that the bond
length is equal to b, kB is the Boltzmann constant and T is the
absolute temperature. The partition function of a semiflexible
chain is

Z =
∫

d{�ri } exp

(
−U0({�ri})

kBT

)
(2)

where integration in equation (2) is performed over the bond
vectors �ri . To calculate the chain partition function and any
chain average property it is useful to introduce the set of normal
coordinates [49]:

�rs = �a0 + 2
N−1∑

k=1

�ak cos

(
πks

N

)
. (3)

In this representation the chain’s potential energy is a quadratic
function of the mode amplitudes:

U0({�ak})
kBT

= N
N−1∑

k=1

(
K

(
kπ

N

)2

+ μ0

)
�a2

k + Nμ0

2
�a2

0 (4)

where we used the approximation (2(1 − cos q) ≈ q2). In
the normal mode representation, the bond–bond correlation
function G(n), describing the decay of the orientational
memory along the polymer backbone,

G(n) = 1

N − n

N−n−1∑

s=0

〈(�rs · �rs+n)〉0, (5)
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is equal to

G(n) = 〈�a2
0〉0 + 2

N−1∑

k=1

〈�a2
k 〉0 cos

(
kπn

N

)
(6)

where brackets 〈· · ·〉0 denote averaging with the statistical
weight exp(−U0({�ak})/kBT ). The value of the bond–bond
correlation function G(0) should be equal to the square of
the bond length, b2, which imposes a constraint on the mode
spectrum:

b2 = 〈�a2
0〉0 + 2

N−1∑

k=1

〈�a2
k 〉0. (7)

We can use this equation as a self-consistency condition
determining the relation between the parameters of the chain
and the parameter μ0 in equation (1).

Since the chain’s potential energy is a quadratic function
of the mode amplitudes, the averaging over the mode
amplitudes reduces to calculation of the Gaussian integrals.
For a long chain we can substitute summation over the mode
number by integration over the wavenumber q = kπ/N and
extend integration to infinity. In this approximation the bond–
bond correlation function is equal to

G(n) = 3

π

∫ ∞

0

cos(qn) dq

K q2 + μ0
= 3

2
√

μ0 K
exp

(
−
√

μ0

K
n

)
.

(8)
Comparing equation (8) with the bond–bond correlation
function of a semiflexible chain with a persistence length lp

and a bond length b, G(n) = b2 exp(−bn/ lp), we obtain
the following relationships between parameters of the chain’s
potential energy and the chain’s bond and persistence lengths:

μ0 = 3

2lpb
, K = 3lp

2b3
. (9)

We will use these relations in section 3 for calculations of
the effect of electrostatic interactions on the swelling of a
semiflexible polyelectrolyte chain.

3. Swelling of a polyelectrolyte chain

Let us now consider a semiflexible polyelectrolyte chain with
fraction of charge monomers α. Here, for simplicity we
will assume that a charge is uniformly distributed over all
monomers such that each monomer is carrying a fractional
charge αe. The potential energy of a polyelectrolyte chain is
given by the following expression:

UPE({�ri})
kBT

= K

2

N−2∑

i=0

(�ri − �ri+1)
2 + μ

2

N−1∑

i=0

�r 2
i

+ lBα2

2

N∑

i 
= j

exp(−κri j)

ri j
, (10)

where ri j is the distance between monomers i and j on the
polymer backbone and lB = e2/εkBT is the Bjerrum length
(the length scale at which the electrostatic interaction between
two elementary charges e in a medium with the dielectric
constant ε is equal to the thermal energy kBT ). The Debye

screening length κ−1 depends on the parameters of the system
as κ2 = 8πlBcs, where cs is the salt concentration. We
will separate the electrostatic interactions into two parts. The
first one, U loc

elec, will account for the electrostatic interactions
between pairs of monomers separated by the number of
bonds l < lcut and the second one, U rem

elec , will take into
account electrostatic interactions between remote pairs along
the polymer backbone with l > lcut. We will also assume that
(κb)−1 < lcut ∝ lp/b. Because of the internal chain bending
rigidity the radius vector between monomers i and j along the
polymer backbone with distance between them |i − j| � lcut

does not deviate much from a straight line. This permits us to
expand the distance between two monomers as follows:

ri j =
√√√√
( j−1∑

s=i

�rs

)2

≈ bli j

(
1 + 1

2li j b2

j−1∑

s=i

(�r 2
s − b2)

−
(

1

4l2
i j b

2

j−1∑

s,s ′=i

(�rs − �rs ′)2

))
(11)

where li j = | j − i | is the number of bonds between
the i th and j th monomers along the polymer backbone.
Using equation (11) we can expand the local electrostatic
energy about a rod-like conformation and obtain the following
correction to the electrostatic energy of a rod:

�U loc
elec({�ri})
kBT

≈ uα2

b2

(
∑

i< j,
li j �lcut

V (li j )

(
li j

2

j−1∑

s=i

(b2 − �r 2
s )

+ 1
4

j−1∑

s,s ′=i

(�rs − �rs ′)2

))
(12)

where u is the ratio of the Bjerrum length lB to the bond size b,
and we introduced a function

V (li j) = exp(−κbli j)

l3
i j

(1 + κbli j). (13)

In the normal mode representation the correction term given by
equation (12) is a quadratic function of the mode amplitudes:

�U loc
elec({�ak})
kBT

= 1

2
Nb2V1 − NV1

�a2
0

2

+ N
N−1∑

k=1

(
−V1 + V2

(
kπ

N

))
�a2

k (14)

where we defined

V1 = uα2

b2

lcut∑

m=1

(
1 − m

N

)
m2V (m) ≈ −uα2

b2
ln(κb) (15a)

V2(q) = 2uα2

b2

lcut∑

m=1

(
1 − m

N

)
V (m)

×
( m∑

s=1

(m − s)(1 − cos(qs))

)
≈

q�1

uα2

4κ2b4
q2. (15b)

Substituting terms describing local electrostatic interactions
(see equation (14)) into the expression for the chain’s potential
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energy equation (10) we obtain

UPE({�ak}, μ̂)

kBT
≈ N

N−1∑

k=1

(
K

(
kπ

N

)2

+ V2

(
kπ

N

)
+ μ̂

)
�a2

k

+ Nμ̂�a2
0

2
+ lBα2

2

N∑

| j−i|>lcut

exp(−κri j({�ak}))
ri j({�ak}) (16)

where we defined μ̂ = μ − V1 and omitted terms that do not
depend on the mode amplitudes.

We will first consider electrostatic interactions between
remote pairs along the polymer backbone as a weak
perturbation and analyze the effect of the local electrostatic
interactions on the renormalization of the chain bending
rigidity. Taking this into account we can write the self-
consistency relation equation (7) as follows:

b2 = 3

π

∫ ∞

0

dq

K q2 + V2(q) + μ̂

≈ 3

π

∫ ∞

0

dq

K q2 + uα2

4b4κ2 q2 + μ̂
= 3

2

1√
μ̂
(
K + uα2

4b4κ2

) . (17)

In simplifying equation (17) we utilized a small q expansion
of function V2(q) (see equation (15b)). It follows from
equation (17) that the effect of the local electrostatic
interactions is reduced to renormalization of the chain’s
bending rigidity. This correction has a well-known OSF form
and scales quadratically with the Debye radius κ−1. Solving
equation (17) for the parameter μ̂ one obtains

μ̂ = 9

4b4

(
K + uα2

4b4κ2

)−1

= 9

4b4Keff
, and

l̂p = lp + lBα2

6κ2b2
.

(18)

It is interesting to point out that the numerical coefficient in
front of the electrostatic correction to the chain’s persistence
length (see equations (18)) is different from the one derived
by the OSF [21, 22] (it is equal to 1/6 instead of 1/4). The
reason for this is a different chain model used to describe a
chain bending rigidity (equation (1)). In our model the bending
energy term depends on the mutual orientation of the 3D bond
vectors {�ri} instead of 2D unit bond vectors {�ni } as it is in the
original OSF model [21, 22]. Thus, a numerical coefficient is
model-dependent and could be written in a general form 1/2D,
where D is the bond vector dimensionality.

In the case of the weak electrostatic interactions their
effect on the chain swelling can be evaluated by using a high
temperature expansion [49]. In this approximation the mean-
square average value of the end-to-end vector �RN is

〈R2〉 = 〈 �R2
N ({�ak})

(
1 − U rem

elec ({�ak})
kBT

)〉

w

×
〈(

1 − U rem
elec ({�ak})

kBT

)〉−1

w

(19)

where brackets 〈· · ·〉w denote averaging with the statistical
weight

w({�ak}) = exp

(
−N

N−1∑

k=1

(
Keff

(
kπ

N

)2

+ μ̂

)
�a2

k − Nμ̂

2
�a2

0

)
.

(20)

Figure 1. Schematic sketch of two chain sections for calculation of
the effective second virial coefficient.

The details of calculations of averages in equation (20) are
given in appendix A, below we present a final result:

〈R2〉 ≈ 2bl̂p N + 4

√
3

π

lBα2

κ2
√

l̂pb
N3/2. (21)

Thus, the total effect of the electrostatic interactions is reduced
to local chain stiffening which is manifested in renormalization
of the chain’s persistence length l̂p and additional chain
swelling which is due to interactions between remote charges
along the polymer backbone. Note that the correction to the
ideal chain size (the second term in the rhs of equation (21))
can be interpreted as a result of interactions between monomers
with the effective second virial coefficient, Bel ≈ 4πlBα2κ−2.
This means that interactions between charges are treated as
uncorrelated. This approximation fails with increasing value
of the Debye screening length when more and more monomers
start contributing to the electrostatic repulsion as two chain
sections come in contact with each other.

In order to demonstrate the importance of the connectivity
effect for calculations of electrostatic interactions between
monomers, let us calculate a probability to find two monomers
separated by s bonds (s  l̂p/b) along the polymer backbone
at a distance d and oriented with respect to each other with an
angle γ (see figure 1):

P(d, γ ) ∝ exp

(
−Uint(d, γ , θ)

kBT

)
exp

(
− 3d2

4bl̂ps

)
(22)

where Uint(d, γ , θ) is the energy of two chain segments
containing test monomers. This energy includes bending and
electrostatic energy contributions. In order to obtain an explicit
form of the interaction energy Uint(d, γ , θ), we will assume
that both chain’s sections have circular conformations with
a radius of curvature Rs and with an angle θ between two
neighboring bond vectors along the polymer backbone (see
figure 1), Rsθ ≈ b. The bending energy of two chain sections
in a circular conformation with n p ≈ π/θ bonds is estimated
as

Ubend(θ)

kBT
≈ 2n p

Keffb2θ2

2
≈ π Keffb

2θ. (23)

Note that one can consider a circular conformation as a directed
walk in which a chain makes a turn by π radians after n p steps.
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The energy of electrostatic interactions between two sections in
a circular conformation is equal to (see appendix B for details)

Uel(d, γ , θ)

kBT
≈ 2πlBα2 exp(−dκ)

κb
√

b2 sin2 γ + dθ(2b + dθ)
. (24)

In the limit of θ = 0 equation (24) is reduced to the
electrostatic energy of two interacting rods. The optimal value
of the bending angle θ as a function of the segment separation
and mutual orientation is obtained by optimizing both bending
and electrostatic energies with respect to an angle θ . By
performing differentiations of equation (23) and (24) one has

(
uα2d

κbKeffb3

)2/3

≈
(

uα2d

κbl̂p

)2/3

≈ sin2 γ + 2dθ/b. (25)

In simplifying equation (25) we have assumed that dθ/b � 1,
Keffb3 ∝ l̂p and omitted numerical coefficients. Analysis of
equation (24) shows that the maximum segment deformation
occurs when both chain sections align in the same plane, γ =
0. For this orientation the bending angle is of the order of

θ ≈
(

uα2b1/2

κ l̂pd1/2

)2/3

. (26)

By substituting this value of the chain bending angle into
equation (24) one can show that the local chain bending will
influence the probability function equation (22) only for the
range of orientation angles γ � ( uα2d

κ l̂pb
)1/3. This interval is

narrow if the parameter uα2d
κ l̂pb

≈ uα2

κ2bl̂p
dκ � 1. Note that

it is true in both cases of weak (l̂p ∝ lp) and strong (l̂p ≈
uα2/κ2b  lp) renormalization of the chain persistence length
by the local electrostatic interactions. (Here we are interested
in the interval κd � 1, because for larger separations d > κ−1

the electrostatic interactions decay exponentially.) Thus, for
the orientation angles γ � ( uα2d

κ l̂pb
)1/3 the total interaction

energy can be approximated by its electrostatic part [52]

Uint(d, γ , 0)

kBT
≈ 2πlBα2 exp(−dκ)

κb2|sin γ | . (27)

Analyzing the probability function, equation (22), with the
interaction energy given by equation (27) one can conclude
that the electrostatic interactions between chain sections will
create a correlation hole with a size of the order of κ−1

around a chain when uα2 > κb. In this range of
parameters evaluation of the electrostatic interactions between
chain sections requires taking into account the effect of
charge connectivity. This effect can be accounted for
approximating electrostatic interactions by an effective second
virial coefficient.

We can use the interaction energy given by equation (27)
to evaluate an effective second virial coefficient between
charged monomers as

Bel ≈ 2b2
∫ π/2

0
sin2 γ dγ

×
∫ ∞

b

(
1 − exp

(
−Uint(r, γ , 0)

kBT

))
dr. (28)

Fixman and Skolnick [52] showed that equation (28) has two
simple asymptotic regimes:

Bel ≈
⎧
⎨

⎩

4πlBα2κ−2, for uα2 � κb
π

4
b2κ−1 ln(lBα2/κb2), for κb � uα2.

(29)

Using equations (29) for the monomer excluded volume we
can rewrite equation (21) as follows:

〈R2〉 ≈ 2bl̂p N +
√

3

π3

N3/2

√
l̂pb

×
{

4πlBα2κ−2, for uα2 � κb

πb2κ ln(lBα2/κb2), for κb � uα2.
(30)

The high temperature expansion breaks down when the value
of the Fixman parameter Bel N1/2/(l̂pb)3/2 becomes of the
order of unity.

In order to obtain a chain size for arbitrary salt
concentration range we will use the Edwards–Singh variational
principle [49]. In the framework of this approach the chain size
is given by a solution of the following equation (see appendix C
for details):

l tr
p

l̂p

− 1 − 31/2

2π3/2

Bel N1/2

(l tr
p b)3/2

(
1 − 3

2

√
l̂p

bN
+ 1

2

(
l̂p

bN

)3/2)
= 0.

(31)
Equation (31) can be considered as a self-consistent equation
for the effective chain’s persistence length l tr

p . Note that, by
using relationships between a chain persistence length and
chain size 〈R2〉 = 2bl tr

p N and R2
0 = 2bl̂p N , one can rewrite

equation (31) in a form similar to the Flory-like expression for
an equilibrium chain size [49]. It is important to point out that
for the case of weak electrostatic interactions their contribution
to the effective monomeric second virial coefficient has to be
supplemented by the second virial coefficient due to excluded-
volume (hard-core) interactions, B0 ≈ πb3/2, in obtaining
which we have performed angle averaging of the excluded
volume of two rods. This modification allows us to capture
a crossover to a neutral chain regime. Solving equation (31)
for a chain persistence length and using a relation between the
chain’s persistence length and a chain size, 〈R2〉 ∝ bl tr

p N , one
has

〈R2〉1/2 ∝ N3/5(lpb4)1/5

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 + uα2(κb)−2)1/5,

for uα2 � κb

(κb)−1/5,

for (uα2b/ lp)
1/2 � κb � uα2.

(32)

To complete our analysis of swelling of a semiflexible
polyelectrolyte chain we have to consider the interval of salt
concentrations for which κb � (uα2b/ lp)

1/2. In this salt
concentration range the local electrostatic interactions provide
a major contribution to the chain’s persistence length, l̂p ≈
uα2/κ2b (see equations (18)). Taking this into account we
obtain

〈R2〉1/2 ∝ N3/5b(uα2)1/5(κb)−3/5,

for κb � (uα2b/ lp)
1/2. (33)
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Figure 2. Dependence of the chain’s persistence lengths l tr
p (symbols)

and l̂p (lines) on the Debye screening length for semiflexible
polyelectrolyte chains with lB = b, α = 1 and lp = 80b for different
chain degrees of polymerization: N = 200 (circles and black line);
N = 103 (squares and red line); N = 5 × 103 (rhomboidss and blue
line); N = 104 (hexagons and gray line); N = 106 (triangles and
dotted line).

Our scaling exponents for the chain size dependence on the
Debye screening length are different from the ones obtained
by Ghosh et al [51]. The origin of this discrepancy is due
to the different consideration of the electrostatic interactions.
In the Ghosh et al approach [51] the electrostatic interactions
between charges are always treated as uncorrelated, effectively
substituting these interactions by an effective second virial
coefficient, Bel ∝ κ−2. In our approach we used two different
forms for the electrostatic second virial coefficient. In the
case of weak electrostatic interactions the connectivity of the
charges into the polymer backbone can be neglected resulting
in the expression for the electrostatic second virial coefficient
to be similar to the ones used by Ghosh et al [51], Bel ∝ κ−2.
However, in the case of the strong electrostatic interactions,
when the electrostatic repulsion, U ∝ kBT (lBg2κ) between
g charges within the Debye screening length, g ∝ α/κb, is
much larger than the thermal energy U  kBT , uα2 > κb,
the connectivity of the charged monomers into a chain plays
an important role. This is manifested in the appearance of the
correlation hole with size of the order of the Debye screening
length surrounding the polymer backbone. Another origin for
the discrepancy between the results is explicit consideration
of the renormalization of the chain’s persistence length by the
local electrostatic interactions adopted in our paper. This was
not done in the Ghosh et al paper [51].

In figure 2 we show the results of numerical optimization
of equation (31) with the value of the second virial
coefficient represented by a sum, B0 + Bel, where the
electrostatic part of the second virial coefficient is given
by equation (B.12) for polyelectrolyte chains with different
degrees of polymerizations and the bare persistence length
lp = 80b. We have also used a more general expression for

Figure 3. Dependence of the normalized chain size R2
N /N6/5 on the

Debye screening length for semiflexible polyelectrolyte chains with
lB = b, α = 1, lp = 80b and different chain degrees of
polymerizations: N = 200 (solid line); N = 103 (dashed line);
N = 5 × 103 (dashed–dotted line); N = 104 (short-dashed line);
N = 106 (dotted line).

the chain’s persistence length:

l̂p ≈ lp + lBα2

18

N∑

m=1

(
1 − m

N

)
exp(−κbm)(1 + κbm)m (34)

which accounts for a finite chain size effect (see equa-
tion (15b)). In equation (34) we have extended summation
up to N because l̂p  κ−1. As one can see from this
figure the values of the chain’s persistence lengths l tr

p and l̂p

converge with increasing the Debye screening length. This is
due to the fact that the value of the effective Fixman parameter
(the last term in the lhs of equation (31)) describing the
strength of the interactions between remote charged pairs along
the polymer backbone decreases with decreasing number of
persistent segments per chain Nb/l̂p. The largest difference
between the two persistence lengths is observed at intermediate
salt concentrations when the value of the electrostatic excluded
volume is large enough and at the same time there is a
sufficient number of chain persistent segments to elevate a
chain swelling. The value of the persistence length saturates
when the Debye screening length becomes of the order of the
chain’s contour length, κbN ≈ 1. In figure 3 we have used
results for l tr

p and plotted the dependence of a normalized value
of the chain size R2

N /N6/5 on the Debye screening length.
In obtaining the chain size we used equation (A.9) with the
persistence length being equal to l tr

p . One can clearly see the
existence of the universal regime at the intermediate values
of the Debye screening length where the lines corresponding
to swelling of chains with different degrees of polymerization
coincide. However, the width of this universal regime is
relatively narrow. This indicates that it would be challenging
to observe pure scaling regimes either in computer simulations
or experimentally.

4. Comparison with experiments

DNA is the most studied example of semiflexible poly-
electrolytes [4–17]. The effect of salt concentration on

6
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Figure 4. Dependence of the DNA persistence length on the solution
ionic strength I obtained by Hagerman for short fragments of DNA
(587 and 434 bp) [5]. The solid line is the best fit given by
equation (36).

conformational properties of DNA was studied by light scatter-
ing [7], by force-extension experiments [15], by transient elec-
tric birefringence [5], by magnetic birefringence [6], by flow
birefringence [9] and by fluorescence microscopy [12, 14].
The main goal of these research efforts was to find a salt
concentration dependence of the DNA persistence length. One
has to keep in mind that the obtained value of a chain’s
persistence length is a function of the method used. For exam-
ple, in scattering and fluorescence microscopy measurements,
the experimentally measured electrostatic persistence length
heavily relies on the relation between a chain size and its
persistence length:

〈R2〉 ∝ bleff
p N. (35)

Unfortunately, this relation provides an actual value of the
chain’s persistence length only when there are no additional
chain swelling effects. This is usually true for relatively short
chains and low salt concentrations when the contribution of the
electrostatic interactions between remote charged pairs along
the polymer backbone is small. The crossover to the swollen
chain regime occurs at salt concentrations where the value
of the Fixman interaction parameter becomes of the order of
unity. In this case a chain persistence length obtained from
equation (35) includes a chain swelling effect and cannot be
considered as a local chain property. Thus, in comparing
experimental data with the model one has to pay close attention
to the method used for extracting a persistence length.

In figure 4 we show experimental data by Hagerman for
short fragments of DNA (587 and 434 bp) [5]. The data points
can be described by a function

lexp
p ≈ 44 nm + 0.0136

I
(36)

where I is the solution ionic strength (for the monovalent salts
it is equal to the solution salt concentration, I = cs). Using
the expression for the chain persistence length equation (18)
and assuming that the distance between phosphate groups on
the DNA dph = 0.34 nm (there are about 10 base pairs

Figure 5. Dependence of the DNA persistence length on the solution
ionic strength I . Blue rhomboids show data by Maret and Weill on
the lyophilized erythrocyte DNA (Mw = 4.2 × 106 g mol−1) [6]. The
blue short-dashed line is the best fit to equation (37) with ionization
degree α = 0.15, bare persistence length lp = 40 nm and degree of
polymerization N = 1.27 × 104. Green triangles show data by
Baumann et al on λ-DNA (Mw = 3.2 × 107 g mol−1) [15]. The
green long-dashed line is the best fit with α = 0.15, lp = 44 nm,
N = 9.7 × 104. Red circles [9] and red squares [7] are data on T7
bacteriophage DNA (Mw = 2.65 × 107 g mol−1). The red line is the
best fit with α = 0.17, lp = 42 nm, N = 8.03 × 104. Black circles
are data by Makita et al on T4 DNA (165.6 kbp) [12]. The black line
is the best fit with α = 0.15, lp = 40 nm, N = 3.3 × 105. The dotted
line corresponds to persistence length of a short DNA without
swelling effects (see figure 4).

per DNA double helix turn with length 3.4 nm) and the
Bjerrum length lB = 0.7 nm we can estimate an effective
chain’s ionization degree α ≈ 0.19 corresponding to the
best fit given by equation (36). In obtaining the degree of
ionization α we have approximated DNA by a rod with a
charge density of 20 charges per 3.4 nm, which gives us
a distance between effective charges to be equal to b =
0.17 nm. For the OSF model [21, 22] the numerical coefficient
in front of the electrostatic correction term is 1/4 instead of
1/6. In this case the ionization degree is αOSF ≈ 0.154.
In our recent paper we have performed molecular dynamics
simulations of semiflexible polyelectrolyte chains at different
salt concentrations [53]. The best fit to the simulation data
corresponds to �lp ≈ 0.264 lBα2

(κb)2 , which gives a fractional
charge per phosphate group to be equal to α ≈ 0.151.

In figure 5 we have combined results for the effective DNA
persistence length obtained by fluorescence microscopy [12],
magnetic birefringence [9], force-extension measurements [15]
and light scattering [7] and fitting of the experimental data
to the effective persistence length given by the following
equation:

l tr
p

l̂p

− 1 − 31/2

2π3/2

(Bel + B0)N1/2

(l tr
p b)3/2

×
(

1 − 3

2

√
l̂p

bN
+ 1

2

(
l̂p

bN

)3/2)
= 0 (37)

where the value of the electrostatic second virial coefficient
was calculated by numerical integration of equation (B.12)
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with a hard-core DNA diameter d0 = 2 nm. The value of
the hard-core second virial coefficient B0 was equal to B0 =
πb2d0/2 ≈ π(0.17)22.0/2 ≈ 9.1 × 10−2 nm3. We have also
corrected a value of the numerical coefficient in equation (18)
for the chain’s persistence length l̂p to 0.264 in agreement with
our simulation results [53]. As one can see all five different
datasets can be fitted to equation (37) with close values of the
adjustable parameters α = 0.15–0.17 and a bare persistence
length lp = 40–44 nm. There is a systematic trend showing an
increase in the value of the effective chain’s persistence length
with increasing the chain’s degree of polymerization N . This
is in agreement with plots shown in figure 2 and is expected
for systems where swelling effects play an important role in
controlling chain bending properties. It is also important to
point out that data points for Bowmann et al [15] obtained from
DNA stretching experiments can also be fitted to equation (37)
with the same value of the ionization degree, α = 0.15.
Thus, our analysis of Bowmann’s data [15] shows that for
their DNA samples with the number of base pairs ∼48.5 kbp
swelling effects are important. (The number of base pairs was
estimated by using for DNA contour length 16.5 μm.) The
agreement between theory and experiments is very good since
we used only known parameters to describe the structure of
DNA and adjusted chain’s degree of ionization and the bare
persistence length. Note that for our ionization degree the
distance between ionized groups lion ≈ b/α ≈ 1–1.13 nm is
larger than the value of the Bjerrum length lB ≈ 0.7 nm. Thus,
there is less than one charge per Bjerrum length.

5. Conclusions

Using high temperature expansion and Edwards–Singh
variational principle [49] we have calculated dependence of
the size of the semiflexible polyelectrolyte chain on salt
concentration. The new feature that sets this study apart from
the previous work is the explicit separation of the electrostatic
interaction term into local and remote parts. The local part
accounts for electrostatic interactions between pairs of charged
monomers separated by distances along the polymer backbone
smaller or of the order of the chain’s persistence length. At
these length scales the internal chain bending rigidity preserves
a chain conformation close to rod-like. We have exploited
this fact and have been able to calculate the effect of the
local electrostatic interactions on stiffening of a polyelectrolyte
chain. The electrostatic correction to the local chain bending
rigidity has a well-known OSF-like form [21, 22] and increases
quadratically with the Debye screening length, l̂p ∝ κ−2.
The second part of the chain’s electrostatic energy, which
accounts for interactions between remote charged pairs along
the polymer backbone, is responsible for chain swelling.
There are three different scaling regimes in dependence of
the chain size on the Debye screening length. At high salt
concentrations, the chain size scales with salt concentration
as R ∝ c−1/5

s . At intermediate salt concentrations the
strong electrostatic interactions between chain sections create
a correlation hole around the chain backbone with a size of the
order of the Debye screening length, κ−1. This weakens the
salt dependence of the chain size, R ∝ c−1/10

s . But still the

interactions between remote charged pairs along the polymer
backbone dominate the chain swelling behavior. Finally, at
low salt concentration the local electrostatic interactions begin
to dominate the chain’s bending rigidity such that the chain’s
persistence length increases with decreasing salt concentration
as l̂p ∝ c−1

s . The combination of the local chain stiffening and
electrostatic excluded volume results in a stronger dependence
of the chain size on salt concentrations, R ∝ c−3/10

s . Note
that in this regime the scaling of the chain size dependence
on salt concentration coincides with the one found for flexible
polyelectrolytes [47]. It should not be surprising since, at
low salt concentrations, the electrostatic interactions play
a dominant role completely renormalizing the bare chain’s
properties.

Our expression for an effective chain persistence length
equation (37) is capable of describing all sets of experimental
data on DNA by using only two adjustable parameters: DNA
ionization degree α ≈ 0.15–0.17 and a bare persistence length
lp ≈ 40–44 nm. This is a remarkable achievement which
could serve as an experimental verification of our assumption
for separation of the length scales. We hope that this work
will inspire further studies of semiflexible polyelectrolytes to
establish general scaling laws for this type of charged systems.
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Appendix A

In this appendix we present details of the calculations of the
chain size using the high temperature expansion. To obtain the
chain size we have to calculate the following averages:

〈R2〉 ≈
〈

�R2
N ({�ak})

(
1 − U rem

elec ({�ak})
kBT

)〉

w

×
〈(

1 + U rem
elec ({�ak})

kBT

)〉

w

≈ 〈 �R2
N ({�ak})〉w +

〈
U rem

elec ({�ak})
kBT

〉

w

〈 �R2
N ({�ak})〉w

−
〈

�R2
N ({�ak})U rem

elec ({�ak})
kBT

〉

w

(A.1)

where averaging is performed with the statistical weight given
by equation (20). We will first calculate the average value
〈 �R2

N ({�ak})〉w . In calculating this average it is useful to
introduce a generating function

Z(q) = 〈exp(i(�q · �RN ))〉w =
〈
exp

(
i

(
�q ·

N−1∑

s=0

�rs

))〉

w

.

(A.2)
The mean-square average value of the end-to-end distance is
obtained by taking a derivative of the generating function with
respect to q:

〈 �R2
N ({�ak})〉w = −��q Z(q)|q=0. (A.3)

8



J. Phys.: Condens. Matter 21 (2009) 424112 A V Dobrynin and J-M Y Carrillo

To calculate averages in the generating function we will use a
normal mode representation of the bond vectors:

�rs = �a0 + 2
N−1∑

k=1

�ak cos

(
πks

N

)
. (A.4)

Using this representation we can write

Z(q) =
〈
exp

(
i

(
�q ·
(

�a0t0(N) +
N−1∑

k=1

�aktk(N)

)))〉

w

(A.5)

where we introduced

tk(N) =
N−1∑

s=0

cos

(
πks

N

)
. (A.6)

Since the chain’s potential energy is a quadratic function of
the mode amplitudes the averaging in equation (A.5) can be
explicitly performed resulting in

Z(q) = exp

(
− q2t2

0 (N)

2Nμ̂
− q2

N

N−1∑

k=1

t2
k (N)

(Keffk̂2 + μ̂)

)
(A.7)

where k̂ = πk/N . In the limit of large N the summation in
equation (A.7) can be transformed to integration:

Z(q) ≈ exp

(
− q2

2

N−1∑

s,s ′=0

1

π

∫ ∞

0

cos(x(s − s ′)) dx

Keffx2 + μ̂

)

= exp

(
−q2

4

N−1∑

s,s ′=0

exp
(−
√

μ̂

Keff
|s − s′|)

√
μ̂Keff

)
. (A.8)

The summation over s and s ′ can be easily performed:

R2
N (l̂p) = 2l̂2

p(exp(−bN/l̂p) + (bN/l̂p) − 1) ≈ 2bl̂p N.

(A.9)
In writing the final answer we have assumed that bN/l̂p  1.
Taking this into account we can write down the final expression
for the generating function:

Z(q) ≈ exp

(
−q2 R2

N (l̂p)

6

)
≈ exp

(
−q2bl̂p N

3

)
. (A.10)

Performing differentiation with respect to q one obtains

〈 �R2
N ({�ak})〉w = −��q Z(q)|q=0 ≈ 2bl̂p N. (A.11)

In performing averaging of the electrostatic interactions
〈U rem

elec ({�ak})
kBT 〉w we need to know the average value of

〈
lBα2

rnm
exp(−rmnκ)

〉

w

= lBα2
∫

d3q

(2π)3

4π

q2 + κ2

× 〈exp(i(�q · �rmn))〉w. (A.12)

The averaging of the exponential function is performed similar
to the averaging of the generating function equation (A.7)
resulting in

〈exp(i(�q · �rmn))〉w =
〈
exp

(
i

(
�q ·

n−1∑

s=m

�rs

))〉

w

= exp

(
− q2 R2

mn

6

)
(A.13)

where

R2
mn(l̂p) = 2l̂2

p(exp(−b|m − n|/l̂p) + (b|m − n|/l̂p) − 1)

≈ 2bl̂p|m − n|. (A.14)

In simplifying the last expression we take into account the
fact that the electrostatic energy term only contains pairs of
monomers separated by a distance bigger or of the order of the
chain persistence length. Performing averages in (A.12) one
has〈

lBα2

rnm
exp(−rmnκ)

〉

w

≈ 2lBα2

π

∫ ∞

0

dq q2

q2 + κ2

× exp

(
−q2bl̂p

3
|m − n|

)
. (A.15)

Now we need the average 〈 �R2
N ({�ak})U rem

elec ({�ak })
kB T 〉w to

complete calculations for the chain size. This average requires
knowledge of the averages in the following form:〈

�R2
N ({�ak}) lBα2

rnm
exp(−rmnκ)

〉

w

= −lBα2
∫

d3q

(2π)3

× 4π

q2 + κ2
�q1〈exp(i(�q · �rmn + �q1 · �RN ))〉w|q1=0. (A.16)

The calculation of the average on the rhs of equation (A.16) is
similar to the ones already performed. The answer is

〈exp(i(�q · �rmn + �q1 · �RN ))〉w = exp

(
−q2 R2

mn(l̂p)

6

− q2
1 R2

N (l̂p)

6
− 2(�q1 · �q2)I1(m, n, l̂p)

)
(A.17)

where we introduced the function

I1(m, n, l̂p) = b2

6

N−1∑

s=0

n−1∑

s ′=m

exp(−|s − s ′|b/l̂p)

= 1
6 (2bl̂p(m − n) − l̂2

p(1 − exp(−b(n − m)/l̂p))

× [exp(−(N − n)b/l̂p) + exp(−mb/l̂p)])

≈ bl̂p(m − n)

3
. (A.18)

In simplifying the last expression we have assumed that the
chain is long enough such that one can neglect the end effects
(omit terms in the square brackets). In this approximation the
average is〈

�R2
N ({�ak}) lBα2

rnm
exp(−rmnκ)

〉

w

= 〈 �R2
N ({�ak})〉w

〈
lBα2

rnm
exp(−rmnκ)

〉

w

− 2lBα2

π

(
2bl̂p(m − n)

3

)2 ∫ ∞

0

dq q4

q2 + κ2

× exp

(
−q2bl̂p|m − n|

3

)
. (A.19)

Thus, collecting all terms together we finally obtain for the
chain size

〈 �R2
N 〉w = 2bl̂p N + 2lBα2

π

N∑

m=lcut

(N − m)

(
2bl̂pm

3

)2

×
∫ ∞

0

dqq4

q2 + κ2
exp

(
−q2bl̂pm

3

)
. (A.20)
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The integral on the rhs of equation (A.20) can be evaluated for
bl̂pmκ2  1 which is true for lcut  bκ . In this approximation

2lBα2

π

N∑

m=lcut

(N − m)

(
2bl̂pm

3

)2 3
√

π

8κ2

(
3

bl̂pm

)5/2

≈ lBα2

κ2
√

bl̂p

√
27

π

N∑

m=lcut

N − m√
m

≈ 4

√
3

π

lBα2

κ2
√

bl̂p

× N3/2

(
1 − 3

2

√
lcut

N
+ 1

2

(
lcut

N

)3/2)
. (A.21)

Substituting this expression into equation (A.20) and
neglecting lcut/N terms we finally obtain

〈R2〉 ≈ 2bl̂p N + 4

√
3

π

lBα2

κ2
√

l̂pb
N3/2 ≈ R2

0 + 61/2

π3/2

Bel N2

R0

(A.22)
where R2

0 = 2bl̂p N and Bel = 4πlBα2κ−2.

Appendix B

We begin the discussion in this appendix by presenting
calculations of the electrostatic interaction between two
charged rods separated by a distance d and oriented with
respect to each other with an angle γ . Let us define the unit
vectors �e1 and �e2 which determine orientations of the rods. The
distance between monomer t and s along these rods is equal to

�rs1s2 = �d + b�e1t − b�e2s. (B.1)

The total energy of electrostatic interactions between two rods
in a given configuration is equal to

Uel(d, γ )

kBT
=

∞∑

t,s=−∞

lBα2

rts
exp(−κrts). (B.2)

In performing the summation in equation (B.2) it useful to
implement an integral representation for the Yukawa potential:

1

r
exp(−rκ) = 2√

π

∫ ∞

0
dx exp

(
−x2r 2 − κ2

4x2

)
. (B.3)

Using this integral representation we can rewrite equation (B.2)
as follows:
Uel(d, γ )

kBT
= 2uα2

√
π

∑

t,s

∫ ∞

0
dx exp

(
−x2r 2

ts − κ2

4x2

)

= 2uα2

√
π

∑

t,s

∫ ∞

0
dx exp

(
−x2(d2

+ b2(t2 + s2 − 2ts cos γ )) − κ2

4x2

)
. (B.4)

Substituting the summation over t and s by integration and
performing these integrations first one has

Uel(d, γ )

kBT
= 2uα2√π

|sin γ |
∫ ∞

0

dx

x2
exp

(
−x2d2 − κ2

4x2

)

= 2πuα2

|sin γ |κb
exp(−κd). (B.5)

Let us now show how this interaction energy will change
if two rods are bent into a circular conformation with a radius
of curvature R = b/θ (see figure 1). It is useful to introduce
the following system of coordinates. We will assume that the
vector �d coincides with the y axis and is pointing along the
positive y direction. The first rod is located in the xy plane
and the normal vector to the plane of the second rod makes an
angle γ with the z axis. The distance rts between monomers t
and s is equal to

r 2
ts = x2

ts + y2
ts + z2

ts (B.6)

x2
ts = R2(sin(tθ) − cos γ sin(sθ))2 (B.7)

y2
ts = (d + 2R − R(cos(tθ) + cos(sθ)))2 (B.8)

z2
ts = R2(sin γ sin(sθ))2. (B.9)

In writing equations (B.6)–(B.9) we have assumed that indexes
s and t run between −∞ and ∞ with zero located at the point
of the closest approach on the y axis. For the small values of
the angle θ we can simplify these equations as follows:

r 2
ts ≈ (b2 + bdθ)(t2 + s2) − 2b2st cos γ + d2. (B.10)

Substituting expression (B.10) into equation (B.4) and
performing integrations one obtains

Uel(d, γ , θ)

kBT
≈ 2πlBα2 exp(−dκ)

κb
√

b2 sin2 γ + dθ(2b + dθ)
. (B.11)

To complete this appendix we give the final answer for the
electrostatic second virial coefficient with effective interaction
given by equation (B.5) [52]:

Bel ≈ 2b2
∫ π/2

0
sin2 γ dγ

∫ ∞

b

(
1 − exp

(
− Uel(r, γ )

kBT

))
dr

= 2b2κ−1
∫ π/2

0
sin2 γ (E1(ξ/ sin γ )

+ ln(ξ/ sin γ ) + C) dγ (B.12)

where C = 0.521 is the Euler constant and ξ =
2π lBα2

κb2 exp(−κd0) (d0 is a hard-core diameter of a rod).

Appendix C

The Edwards–Singh variational principle [49] optimizes the
difference between

0 = 〈 �R2
N ({�ak})(H0({�ak}) + U rem

elec ({�ak}) − Htr({�ak}))〉tr

− 〈 �R2
N ({�ak})〉tr〈(H0({�ak}) + U rem

elec ({�ak}) − Htr({�ak}))〉tr

(C.1)

where

H0({�ak})
kBT

≈ N
N−1∑

k=1

(
Keff

(
kπ

N

)2

+ μ̂

)
�a2

k + Nμ̂

2
�a2

0 (C.2)

and the trial Hamiltonian, Htr({�ak}), has the same form as the
original one but with different values of the parameters Ktr and
μtr.

10



J. Phys.: Condens. Matter 21 (2009) 424112 A V Dobrynin and J-M Y Carrillo

Most of the averages needed for equation (C.1) have
already been calculated in appendix A. The remaining ones
are associated with the averages in the following form:

I2 = 〈 �R2
N ({�ak})H0({�ak})〉tr−〈 �R2

N ({�ak})〉tr〈H0({�ak})〉tr. (C.3)

These averages can be obtained from the derivatives of
〈 �R2

N ({�ak})〉tr with respect to parameters Ktr and μtr:
〈

�R2
N ({�ak}) H0({�ak})

kBT

〉

tr

− 〈 �R2
N ({�ak})〉tr

〈
H0({�ak})

kBT

〉

tr

= −Keff
∂〈 �R2

N ({�ak})〉tr

∂Ktr
− μ̂

∂〈 �R2
N ({�ak})〉tr

∂μtr

≈ 3Nμ̂

μ2
tr

= 2b
(l tr

p )2 N

l̂p

(C.4)

〈
�R2

N ({�ak}) Htr({�ak})
kBT

〉

tr

− 〈 �R2
N ({�ak})〉tr

〈
Htr({�ak})

kBT

〉

tr

= −Ktr
∂〈 �R2

N ({�ak})〉tr

∂Ktr
− μtr

∂〈 �R2
N ({�ak})〉tr

∂μtr

≈ 3N

μtr
= 2bl tr

p N. (C.5)

Substituting averages into equation (C.1) one obtains the
following expression for the Edwards–Singh variational
principle:

〈R2
tr〉

R2
0

− 1 − 61/2

π3/2

Bel N2

〈R2
tr〉3/2

(
1 − 3

2

√
l̂p

bN
+ 1

2

(
l̂p

bN

)3/2)
= 0

(C.6)
where we introduced 〈R2

tr〉 = 2bl tr
p N and R2

0 = 2bl̂p N .
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